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These notes on semidefinite programming will differ a bit from the usual presenta-
tion. Recent research has tackled a family of semidefinite programming relaxations
known as the Sum-of-Squares hierarchy from the perspective of statistics, and made
much progress on statistical inference problems in doing so. These analyses are based
loosely on the method of moments in statistics, where empirical estimates of the mo-
ments (E p(x) for monomials p(x)) of an unknown distribution are used to estimate
the parameters of that distribution.

This motivates us to frame semidefinite programming itself in the language of statis-
tics. First we introduce the MAX-CUT problem, and discussing how linear program-
ming methods are insufficient to solve (or even approximate) this problem. After
that, we’ll define semidefinite programs and analyze their application to MAX-CUT
via the Goemans-Williamson algorithm.
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1 The MAX-CUT problem

Definition 1.1. A cut of an undirected unweighted graph G = (V,E), is a set A ⊆ V ,
whose capacity is

c(A) :=
∣∣∣{{u, v} ∈ E : u ∈ A ⊕ v ∈ A

}∣∣∣ ,
where ⊕ is the exclusive OR.

Problem 1.2. MAX-CUT: Given an undirected graph G = (V,E), find a cut A ⊆ V
that satisfies

c(A) = max
U⊆V

c(U) .

We don’t know how to solve this problem in polynomial-time, and in fact it is NP-
complete. However, progress has been made on finding approximately optimal solu-
tions to this problem.

Problem 1.3. α-approximate MAX-CUT: Given an undirected graph G = (V,E),
find a cut A ⊆ V that satisfies

c(A) ≥ αmax
U⊆V

c(U) .

We’ll observe that a 0.5-approximation is readily obtained by simply taking a random
cut of the graph. So our attention will be focused on improving this ratio.

Proposition 1.1. A random cut A ⊆ V , where each v ∈ V is in A with 50%
probability and not in A with 50% probability, attains a 0.5-approximate MAX-CUT.

Proof. Use the linearity of expectation to find the expected value of c(A) as the sum
of the probabilities that each edge in E is cut. Then the 0.5-approximation follows
by Markov’s inequality, taking repeated trials if necessary. Letting 1[p] denote the
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function that is 1 when p is a true proposition and 0 when p is false:

E
A
c(A) = E

A

∑
{u,v}∈E

1 [u ∈ A ⊕ v ∈ A]

=
∑
{u,v}∈E

E
A
1 [u ∈ A ⊕ v ∈ A]

=
∑
{u,v}∈E

Pr
A

[u ∈ A ⊕ v ∈ A]

=
∑
{u,v}∈E

1
2

= 1
2
|E|

≥ 1
2

max
U⊆V

c(U) .

2 Attempt by linear programming (LP)

We may write MAX-CUT as the following mathematical program:

max
x

∑
{u,v}∈E

1
2
(1− xuxv)

s.t. xv ∈ {−1, 1} , ∀v ∈ V .

We interpret xv as indicating which side of the cut v is in. Then 1
2
(1− xuxv) is 0 if

u and v are on the same side of the cut, and 1 if different.

So try a linear relaxation... first we create z{u,v} as a stand-in variable for xuxv.
Then for xu, xv, z{u,v} ∈ {−1, 1}, the condition z{u,v} ≥ xuxv is captured by the
linear inequalities z{u,v} ≥ −xu − xv − 1 and z{u,v} ≥ xu + xv − 1 (it is okay that
we allow z{u,v} to be larger than the expression it’s standing in for since we are
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maximizing its negation anyway).

max
x,z

∑
e∈E

1
2
(1− ze)

s.t. z{u,v} ≥ −xu − xv − 1 , ∀{u, v} ∈ E ,
z{u,v} ≥ xu + xv − 1 , ∀{u, v} ∈ E ,
xv ∈ {−1, 1} , ∀v ∈ V .

Now we relax the integer constraints to linear ones:

max
x,z

∑
e∈E

1
2
(1− ze)

s.t. z{u,v} ≥ −xu − xv − 1 , ∀{u, v} ∈ E ,
z{u,v} ≥ xu + xv − 1 , ∀{u, v} ∈ E ,
− 1 ≤ xv ≤ 1 , ∀v ∈ V .

But notice (∀v ∈ V . xv = 0) and (∀e ∈ E . ze = −1) is a solution that “cuts” every
edge!

This difficulty will occur in every LP formulation, due to symmetry : whenever A is
a cut achieving good value, then the complement of A is also a cut achieving good
value. Even if you tried to “break the symmetry” by adding local constraints, say by
fixing xv0 = 1 for some v0 ∈ V , you could still flip the sign of every other coordinate of
x and still take only a small deg(v0)-sized loss in the value of the solution. Therefore,
any relaxation where the average of two good solutions is also a good solution cannot
work for this problem!

We need the quadratic term xuxv that we tried to eliminate by introducing the
variable ze!

2.1 Interpretation as expectations and marginal probabili-
ties

In the homework, we’ve seen LPs with variables bounded between 0 and 1 that
were interpreted as marginal probabilities. Even when LP variables are not bounded
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between 0 and 1, they may be interpreted as expected values : every fractional solution
to an LP relaxation of an integer program is a convex combination of integer-valued
solutions. In the same way, the expected values of a probability distribution over
those integer-valued solutions is a convex combination of those solutions.

This interpretation will guide our generalization for adding quadratic terms to LPs.
First we will understand covariance matrices—equivalently, the expected values of
quadratic terms of zero-mean random variables.

3 Covariance and positive-semidefinite matrices

Definition 3.1. The covariance matrix of a zero-mean distribution D over Rn is
defined as Ex∼D xxT .

(In general if the mean µ = Ex∼D x is not zero, the covariance matrix is Ex∼D(x −
µ)(x− µ)T .)

Observe that knowing the covariance matrix tells you the expected value of every
homogeneous degree-2 polynomial. Each such polynomial is a linear combination
of degree-2 monomials, and each degree-2 monomial xixj has expectation Exixj =
E 〈ei, x〉 〈ej, x〉 = E eTi xxT ej = eTi (ExxT )ej.

We will need tools to analyze covariance matrices. The first of these is the eigende-
composition, and the accompanying spectral theorem, stated here without proof.

Theorem 3.1 (The Spectral Theorem). Any symmetric (or, more generally, normal)
matrix M has an eigendecomposition M = V ΛV T , where Λ is a diagonal matrix of
eigenvalues λi, and V is an orthogonal matrix whose columns are their corresponding
(unit-length and mutually orthogonal) eigenvectors vi. This implies that Mvi = λivi.

In particular, a matrix is the covariance matrix of some distribution if and only if it
has all-nonnegative eigenvalues, as we will see.

Definition 3.2. A positive-semidefinite (PSD) matrix M is a symmetric matrix
whose eigenvalues are all non-negative. We will denote M being positive-semidefinite
by writing M � 0 (in this notation, referred to as the Loewner order, A � B means
that B − A � 0).
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Proposition 3.2. For a symmetric matrix M ∈ Rn×n, the following statements are
equivalent:

1. M � 0.

2. M = AAT for some matrix A.

3. vTMv ≥ 0 for all v ∈ Rn.

Proof. (1) =⇒ (2): By definition M � 0 implies M = V ΛV T where Λ is diagonal
with nonnegative entries. Define Λ1/2 as the diagonal matrix so that (Λ1/2)i,i =√

Λi,i. Then, taking A = V Λ1/2, we find M = V Λ1/2Λ1/2V T = AAT .

(2) =⇒ (3): If M = AAT , then vTMv = vTAATv = 〈Av,Av〉 ≥ 0.

(3) =⇒ (1): If vTMv ≥ 0 for all v ∈ Rn, then in particular, vTi Mvi ≥ 0 for each
eigenvector vi of M . With λi its eigenvalue then, Mvi = λivi, so that vTi ·λivi =
λi ≥ 0. So all eigenvalues are non-negative.

Proposition 3.3. Every PSD matrix M has a unique PSD square root, denoted
M1/2, so that M1/2 is PSD and (M1/2)2 = M .

Proof. Since M is PSD, it has an eigendecomposition M = V ΛV T where Λ is diag-
onal with nonnegative entries. Then define M1/2 = V Λ1/2V T .

Proposition 3.4. M � 0 if and only if M is the covariance matrix of some zero-
distribution over n variables. That is, if and only if there is a distribution D over
Rn such that M = Ex∼D xxT .

Proof. By Proposition 3.2, if M � 0 then M = AAT for some A. If M = AAT ,
then we may take as our distribution D the uniform distribution over the hyper-
sphere times the columns a1, . . . , an of A multiplied by

√
n. Then Ex∼D xxT =

1
n

∑
i∈[n] n aia

T
i = AAT .

If M is the covariance matrix of a zero-mean distribution D, then by linearity of
expectation, vTMv = Ex∼D vTxxTv = Ex∼D 〈x, v〉2. The expectation of an always-

6



nonnegative quantity must itself be nonnegative, so vTMv ≥ 0 for all vectors v. By
Proposition 3.2, this is sufficient to conclude M � 0.

In fact, taking any distribution D with a covariance of the identity matrix and
multiplying the samples x ∼ D by M1/2 yields a random variable y = M1/2x
whose covariance matrix is M . We can check this: E yyT = Ex∼DM1/2xxTM1/2 =
M1/2(Ex∼D xxT )M1/2 = M .

Examples of distributions with covariance Id include

• the uniform distribution over the radius-
√
n sphere and

• the standard Gaussian N (0, Id).

The Gaussian distribution N (0,M) may be defined as M1/2 times N (0, Id). As a
side observation, transforming a sphere with M1/2 results in an ellipsoid.

4 Semidefinite programming

We’ll use Ex^(µ,M) to denote the expectation (of a degree-2 homogeneous polynomial)
over x, when x is drawn from a distribution with covariance M and mean µ. When
the mean is 0, we will shorten this to Ex^M .

Please note that this is not standard notation: you can think of this as shorthand
to denote Ex∼N (µ,M), or µ added to the expectation of M1/2 times a vector drawn
randomly from the radius-

√
n sphere—it doesn’t really matter which specific distri-

bution, we only care about its mean and covariance and the fact that the distribution
exists.

The generic form of a semidefinite program (SDP) may be written, for degree-2
polynomials p(x) and qi(x) and bi ∈ R,

min
µ∈Rn,M�0

E
x^(µ,M)

p(x)

s.t. E
x^(µ,M)

qi(x) ≤ bi , ∀i ∈ [m] .
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This is not (yet) the standard presentation of an SDP: see Section 6 for the equiva-
lence between this and a more standard presentation.

4.1 Solving an SDP

Recall from a previous lecture that the ellipsoid algorithm only required access to a
separating-hyperplane oracle to find a feasible point of a convex body.

The degree-2 homogeneous polynomial constraints and objective functions in x, are
linear in the actual variables Ex^M xixj of the semidefinite program. Thus they
serve as their own separating-hyperplane oracles, like for LPs. As there are m such
constraints each referring to up to n2 variables, checking each of these takes O(mn2)
time.

The positive-semidefinite-ness constraint M � 0 can be characterized as an infinite
family of linear constraints: vTMv ≥ 0 for all v ∈ Rn. Then simply taking an
eigendecomposition of M finds you some v for which the constraint is violated, if it
exists. An eigendecomposition can be done in O(n3) arithmetic operations.

All-in-all, an iteration of ellipsoid takes O(n2m + n3) arithmetic operations to do.
As each iteration cuts the size of the search space by a multiplicative factor, it takes
O((n2m + n3) log(ε−1)) arithmetic operations to find a feasible point within ε1/n

additive error of the objective function, assuming that the feasible space has volume
at least ε, and that the starting ellipsoid has constant volume.

A word of warning: this running time depends on the specific formulation of semidef-
inite programming being used.
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5 Goemans-Williamson algorithm for MAX-CUT via

semidefinite programming

Recall that earlier in this lecture, we formulated MAX-CUT as the following mathe-
matical program:

max
x

∑
{u,v}∈E

1
2
(1− xuxv)

s.t. xv ∈ {−1, 1} , ∀v ∈ V .

To make this a semidefinite programming relaxation, we simply insert expectation
operators:

max
M�0

E
x^M

∑
{u,v}∈E

1
2
(1− xuxv)

s.t. E
x^M

x2v = 1 , ∀v ∈ V .

We may solve this SDP to obtain a covariance matrix M maximizing the value
c(M) = Ex^M

∑
{u,v}∈E

1
2
(1− xuxv). Since this SDP generalizes actual integer solu-

tions to MAX-CUT (take M to be the covariance of a constant distribution over an
integer solution), this value is at least as large as the capacity of the actual maximum
cut, so that if M maximizes this SDP, then c(M) ≥ maxU⊆V c(U).

We round the SDP solution M (akin to “rounding” a fractional LP solution) by
sampling a random point z from the Gaussian distribution N (0,M) with mean 0
and covariance M . Then taking the cut to be Az = {v ∈ V : zv > 0} reduces the
value from the SDP by at worst a factor of 0.878 (rounded down) in expectation, as
explained in the next section, giving us an 0.878-approximation to MAX-CUT.
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5.1 Analysis

We start by using linearity of expectation to compute the expected value of the
capacity of a cut Az that we generate in this way.

E
z∼N (0,M)

c(Az) = E
z∼N (0,M)

∑
{u,v}∈E

1 [zu > 0 ⊕ zv > 0]

=
∑
{u,v}∈E

E
z∼N (0,M)

1 [zu > 0 ⊕ zv > 0]

=
∑
{u,v}∈E

Pr
z∼N (0,M)

[zu > 0 ⊕ zv > 0] .

We will tackle this by evaluating the individual summands pu,v := Prz∼N (0,M) [zu > 0 ⊕ zv > 0].

Note that since p depends only on zu and zv, we may restrict our attention to the
2-dimensional case, with the covariance matrix

M ′ =

(
1 E

x^M
xuxv

E
x^M

xuxv 1

)
,

so that
pu,v = Pr

z∼N (0,M ′)
[z1 > 0 ⊕ z2 > 0] .

Recalling that z ∼ N (0,M ′) has the same distribution as M ′1/2y when y is sampled
from a standard Gaussian y ∼ N (0, Id), we substitute

pu,v = Pr
y∼N (0,Id)

[
(M ′1/2y)1 > 0 ⊕ (M ′1/2y)2 > 0

]
.

Equivalently, letting µ be the first column of M ′1/2 and ν be the second column,

pu,v = Pr
y∼N (0,Id)

[〈µ, y〉 > 0 ⊕ 〈ν, y〉 > 0] .

Fact 5.1. The standard multivariate Gaussian distribution N (0, Id) is rotationally
invariant.

Notice that the test 〈µ, y〉 > 0 simply selects a half-plane through the origin with
normal vector µ. So pu,v asks what the chance is that y falls into the symmetric
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Figure 1: The area (in gray) of a circle in the symmetric difference of two half-spaces. The
vectors µ and ν are the normal vectors of the two blue lines. The dot product (dotted red
line) of these two vectors is the cosine of the angle between them.

difference between the two half-planes defined by 〈µ, y〉 > 0 and 〈ν, y〉 > 0. Since
y ∼ N (0, Id) is rotationally invariant, every circle around the origin has the property
that y is equally likely to fall on any point on that circle. So we can calculate this
probability pu,v by asking how much of each circle is in that symmetric difference of
two half-planes (Figure 1). Let a and b be so that (a b)T = µ and (b a)T = ν. Since(

1 E
x^M

xuxv

E
x^M

xuxv 1

)
=

(
a b
b a

)2

=

(
a2 + b2 2ab

2ab a2 + b2

)
,

this shows that a2 + b2 = 1 meaning that both µ = (a b)T and ν = (b a)T are unit
vectors. It also shows that their dot product 2ab is equal to Ex^M xuxv. Since the dot
product 〈µ, ν〉 is equal to ‖µ‖ · ‖ν‖ = 1 times the cosine of the angle between them,
this means that the angle between the two vectors is given by arccos(Ex^M xuxv), so
that the proportion of the area of a circle that falls inside the symmetric difference
of those two half-planes is given by

pu,v =
2

2π
arccos

(
E

x^M
xuxv

)
.

And it just so happens that 1
π

arccos(x) ≥ 0.878 · 1
2
(1 − x) for all x ∈ [−1, 1]. So

therefore,

p ≥ 0.878 · 1
2

(
1− E

x^M
xuxv

)
,
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so that

E
z∼N (0,M)

c(Az) ≥
∑
{u,v}∈E

0.878 · 1
2

(
1− E

x^M
xuxv

)
= 0.878 E

x^M

∑
{u,v}∈E

1
2
(1− xuxv)

= 0.878 c(M)

≥ 0.878 max
U⊆V

c(U) .

Where c(M) was defined early on in Section 5.

6 Relationship with usual presentation of SDP

Recall our generic SDP, assuming zero mean vector µ = 0, with degree-2 homoge-
neous polynomials p(x) and qi(x) and b ∈ Rm,

min
M�0

E
x^M

p(x)

s.t. E
x^M

qi(x) ≤ bi , ∀i ∈ [m] .

Proposition 6.1. M � 0 if and only if M ∈ Rn×n is a Gram matrix of n-
dimensional vectors. That is, if and only if there is a sequence of vectors z1, . . . zn ∈
Rn such that Mi,j = 〈zi, zj〉.

Proof. By Proposition 3.2, M � 0 if and only if M = AAT for some matrix A. In
fact, we may take A = M1/2. Let zi be the ith row of A. Then Mi,j = eTi AA

T ej =
zTi zj = 〈zi, zj〉.

Therefore, Ex^M xixj may be interpreted as 〈zi, zj〉 for some set of vectors zi, . . . , zj ∈
Rn.
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This gives us precisely the usual presentation of an SDP, which is

min
z1,...,zn∈Rn

∑
i,j∈[n]

ci,j 〈zi, zj〉

s.t.
∑
i,j∈[n]

ai,j,k 〈zi, zj〉 ≤ bk , ∀k ∈ [m] .

7 Duality of SDPs and coefficient matrices of poly-

nomials

Consider again the generic SDP, with degree-2 homogeneous polynomials p(x) and
qi(x) and b ∈ Rm,

min
M�0

E
x^M

p(x)

s.t. E
x^M

qi(x) ≤ bi , ∀i ∈ [m] .

The dual of this SDP is the following:

max
y∈Rm

〈b, y〉

s.t.
∑
i∈[m]

yi qi(x) ≤ p(x) , ∀x ∈ Rn .

By Stengle’s Positivstellensatz, that last constraint holds for all x ∈ Rn precisely
when p(x)−

∑
i∈[m] yi qi(x) can be expressed as a sum of square polynomials.

This may in fact be expressed as another PSD-ness contraint, if we represent these
polynomials as coefficient matrices.

Definition 7.1. For a homogeneous degree-2 polynomial p : Rn → R with p(x) =∑
i,j ci,jxixj, let its coefficient matrix be C : Rn×n with Ci,j = 1

2
(ci,j + cj,i).

Then
E

x^M
p(x) = 〈C,M〉 := Tr(CM) =

∑
i,j

Ci,jMi,j .
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Observe that every square polynomial has a rank-1 positive-semidefinite coefficient
matrix: if p(x) = 〈v, x〉2 with 〈v, x〉 being a generic linear function, then the coef-
ficient matrix of p is equal to vvT . Therefore, every sum of square polynomials has
a PSD coefficient matrix. And conversely, since every PSD matrix can be written
as a sum of rank-1 PSD terms, every PSD coefficient matrix is a sum of square
polynomials.

Weak duality: The value of the dual, when it exists, is at most the value of the
primal: Ex^M∗ p(x) ≥ 〈b, y∗〉 where M∗ is an optimal primal solution and y∗ is an
optimal dual solution. This is seen from the following derivation:

E
x^M∗

p(x)− 〈b, y∗〉 = E
x^M∗

p(x)−
∑
i∈[m]

biy
∗
i

≥ E
x^M∗

p(x)−
∑
i∈[m]

E
x^M∗

qi(x)y∗i

= E
x^M∗

p(x)−
∑
i∈[m]

qi(x)y∗i

 .

Recall that p(x) −
∑

i∈[m] qi(x)y∗i is non-negative for all x, so its expectation must
also be non-negative.

Strong duality: Not all SDPs satisfy strong duality. But they do under Slater’s
condition, which says that there is a feasible solution M0 to the primal such that
M0 � 0 is strictly positive-definite (equivalently, PSD and full rank). When that
condition is satisfied, then Ex^M∗ p(x) = 〈b, y∗〉.

8 Complexity theory and the hardness of approx-

imation

We saw that Goemans-Williamson’s algorithm gets a 0.878-approximation for MAX-CUT.
We might ask if there’s a way to do better than that.
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This gets us into the topic of the Hardness of Approximation. There have been
two main themes in approximation algorithms for maximum-constraint-satisfaction
problems: most of the time, either we can show that it’s NP-hard to achieve any
approximation ratio better than the one attained by a random assignment (such as
for MAX-3-SAT or MAX-3-XOR), or we know an algorithm that does better than
random, but we don’t know if it’s possible to do even better than that, or if doing
any better would be NP-hard. MAX-CUT is among the latter: we don’t know if it’s
NP-hard to achieve an α-approximate MAX-CUT for any α strictly between 0.879
and 1.

The Unique Games Conjecture is a central conjecture in Hardness of Approximation,
which, if true, would imply hardness results exactly matching many of the known
algorithms in the latter case, including MAX-CUT. The conjecture roughly posits
that it is NP-hard to achieve any constant-factor approximation to the UNIQUE-
LABEL-COVER problem: finding a labeling of the vertices of a graph that maximizes
the number of satisfied edge constraints, when the edge constraints are guaranteed to
satisfy the property that for any label assigned to one of its incident vertices, there
is only one label possible for the other vertex that would satisfy the constraint.

There is a reduction by Khot, Kindler, Mossel, and O’Donnell in 2005, from a
constant-factor approximation of UNIQUE-LABEL-COVER to a 0.879-approximation
of MAX-CUT. Thus if the Unique Games Conjecture is true, the Goemans-Williamson
algorithm achieves the optimal polynomial-time approximation assuming P 6= NP.

To give a rough sense of the reduction: it relies on the “Majority is Stablest” theorem,
which is a statement about the geometry of the hypercube, roughly saying that planar
cuts through the origin minimize the ratio of edges cut to the number of vertices in the
smaller half of the cut. The reduction takes an instance of UNIQUE-LABEL-COVER
with vertex set V and L the set of possible labels for each vertex, and creates an
instance of MAX-CUT with vertex set V ×2L (so, ordered pairs consisting of a vertex
in V along with a subset of L). The idea here is be that a label assignment x ∈ LV
in the label cover instance will correspond to the cut in the MAX-CUT instance given
by A = {(u, S) ∈ V × 2L : xu ∈ S}. The edges in the MAX-CUT instance are a bit
complicated to specify, but they basically are set up to have a large number of edges
cut when (1) label-cover constraint are satisfied (2) the implied labelling of each
vertex is consistent—i.e. for each u there is an ` such that (u, S) ∈ A ⇐⇒ ` ∈ S.
Majority is Stablest comes in to ensure (2): it tells us that the worst non-consistent
labellings will pass the consistency check with 1− 0.879 probability as |L| → ∞.
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This construction is an example of a probabilistically checkable proof : so-called be-
cause an assignment to the MAX-CUT instance that achieves good value serves as
a proof that the UNIQUE-LABEL-COVER instance also has good value: furthermore
it’s a proof that can be checked probabilistically by only inspecting a few bits. If
(and only if) the UNIQUE-LABEL-COVER instance indeed has a good labelling, then
a good cut exists for the MAX-CUT instance. And if (and only if) that good cut
exists, then you only need to check a few randomly selected edges to be convinced
that it does indeed achieve good value.

All known hardness-of-approximation results to date follow this sort of construction.
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